Abstract:In this paper, a three-dimensional (3D) deployment scheme of pinching antenna array is proposed, aiming to enhances the performance of integrated sensing and communication (ISAC) systems. To fully realize the potential of 3D deployment, a joint antenna positioning, time allocation and transmit power optimization problem is formulated to maximize the sum communication rate with the constraints of target sensing rates and system energy. To solve the sum rate maximization problem, we propose a heterogeneous graph neural network based reinforcement learning (HGRL) algorithm. Simulation results prove that 3D deployment of pinching antenna array outperforms 1D and 2D counterparts in ISAC systems. Moreover, the proposed HGRL algorithm surpasses other baselines in both performance and convergence speed due to the advanced observation construction of the environment.
Abstract:In this paper, a general ISAC system where the base station (BS) communicates with multiple users and performs target detection is considered. Then, a sum communication rate maximization problem is formulated, subjected to the constraints of transmit power and the minimum sensing rates of users. To solve this problem, we develop a framework that leverages deep learning algorithms to provide a three-stage solution for ISAC beamforming. The three-stage beamforming optimization solution includes three modules: 1) an unsupervised learning based feature extraction algorithm is proposed to extract fixed-size latent features while keeping its essential information from the variable channel state information (CSI); 2) a reinforcement learning (RL) based beampattern optimization algorithm is proposed to search the desired beampattern according to the extracted features; 3) a supervised learning based beamforming reconstruction algorithm is proposed to reconstruct the beamforming vector from beampattern given by the RL agent. Simulation results demonstrate that the proposed three-stage solution outperforms the baseline RL algorithm by optimizing the intuitional beampattern rather than beamforming.
Abstract:This paper proposes a novel multi-mode pinching-antenna systems (PASS) framework. Multiple data streams can be transmitted within a single waveguide through multiple guided modes, thus facilitating efficient multi-user communications through the mode-domain multiplexing. A physic model is derived, which reveals the mode-selective power radiation feature of pinching antennas (PAs). A two-mode PASS enabled two-user downlink communication system is investigated. Considering the mode selectivity of PA power radiation, a practical PA grouping scheme is proposed, where each PA group matches with one specific guided mode and mainly radiates its signal sequentially. Depending on whether the guided mode leaks power to unmatched PAs or not, the proposed PA grouping scheme operates in either the non-leakage or weak-leakage regime. Based on this, the baseband beamforming and PA locations are jointly optimized for sum rate maximization, subject to each user's minimum rate requirement. 1) A simple two-PA case in non-leakage regime is first considered. To solve the formulated problem, a channel orthogonality based solution is proposed. The channel orthogonality is ensured by large-scale and wavelength-scale equality constraints on PA locations. Thus, the optimal beamforming reduces to maximum-ratio transmission (MRT). Moreover, the optimal PA locations are obtained via a Newton-based one-dimension search algorithm that enforces two-scale PA-location constraints by Newton's method. 2) A general multi-PA case in both non-leakage and weak-leakage regimes is further considered. A low-complexity particle-swarm optimization with zero-forcing beamforming (PSO-ZF) algorithm is developed, thus effectively tackling the high-oscillatory and strong-coupled problem. Simulation results demonstrate the superiority of the proposed multi-mode PASS over conventional single-mode PASS and fixed-antenna structures.
Abstract:The pinching-antenna system (PASS), recently proposed as a flexible-antenna technology, has been regarded as a promising solution for several challenges in next-generation wireless networks. It provides large-scale antenna reconfiguration, establishes stable line-of-sight links, mitigates signal blockage, and exploits near-field advantages through its distinctive architecture. This article aims to present a comprehensive overview of the state of the art in PASS. The fundamental principles of PASS are first discussed, including its hardware architecture, circuit and physical models, and signal models. Several emerging PASS designs, such as segmented PASS (S-PASS), center-fed PASS (C-PASS), and multi-mode PASS (M-PASS), are subsequently introduced, and their design features are discussed. In addition, the properties and promising applications of PASS for wireless sensing are reviewed. On this basis, recent progress in the performance analysis of PASS for both communications and sensing is surveyed, and the performance gains achieved by PASS are highlighted. Existing research contributions in optimization and machine learning are also summarized, with the practical challenges of beamforming and resource allocation being identified in relation to the unique transmission structure and propagation characteristics of PASS. Finally, several variants of PASS are presented, and key implementation challenges that remain open for future study are discussed.
Abstract:The spectral and energy efficiency (SE-EE) trade-off in pinching-antenna systems (PASS) is investigated in this paper. In particular, two practical operating protocols, namely waveguide multiplexing (WM) and waveguide switching (WS), are considered. A multi-objective optimization problem (MOOP) is formulated to jointly optimize the baseband and pinching beamforming for maximizing the achievable SE and EE, which is then converted into a single-objective problem via the ε-constraint method. For WM, the problem is decomposed within the alternating-optimization framework, where the baseband beamforming is optimized using the successive convex approximation, and the pinching beamforming is updated through the particle swarm optimization. For WS, due to the time-division transmission and interference-free nature, the pinching beamforming in each time slot is first adjusted to maximize the served user channel gain, followed by the baseband power allocation. Simulation results demonstrate that 1) PASS outperforms conventional antennas by mitigating large-scale path losses; 2) WS leads to a higher maximum achievable EE by activating a single RF chain, whereas WM yields a higher SE upper bound by serving all users concurrently; and 3) increasing the number of users substantially enhances SE under WM, whereas WS shows more pronounced benefits in low-signal-to-noise ratio regimes.
Abstract:Accurately understanding the propagation environment is a fundamental challenge in site-specific beamforming (SSBF). This paper proposes a novel generative SSBF (GenSSBF) solution, which represents a paradigm shift from conventional unstructured prediction to joint-structure modeling. First, considering the fundamental differences between beam generation and conventional image synthesis, a unified GenSSBF framework is proposed, which includes a site profile, a wireless prompting module, and a generator. Second, a beam-brainstorm (BBS) solution is proposed as an instantiation of this GenSSBF framework. Specifically, the site profile is configured by transforming channel data from spatial domain to a reversible latent space via discrete Fourier transform (DFT). To facilitate practical deployment, the wireless prompt is constructed from the reference signal received power (RSRP) measured using a small number of DFT-beams. Finally, the generator is developed using a customized conditional diffusion model. Rather than relying on a meticulously designed global codebook, BBS directly generates diverse and high-fidelity user-specific beams guided by the wireless prompts. Simulation results on accurate ray-tracing datasets demonstrate that BBS can achieve near-optimal beamforming gain while drastically reducing the beam sweeping overhead, even in low signal-to-noise ratio (SNR) environments.




Abstract:As a novel member of flexible antennas, the pinching antenna (PA) is realized by integrating small dielectric particles on a waveguide, offering unique regulatory capabilities on constructing line-of-sight (LoS) links and enhancing transceiver channels, reducing path loss and signal blockage. Meanwhile, non-orthogonal multiple access (NOMA) has become a potential technology of next-generation communications due to its remarkable advantages in spectrum efficiency and user access capability. The integration of PA and NOMA enables synergistic leveraging of PA's channel regulation capability and NOMA's multi-user multiplexing advantage, forming a complementary technical framework to deliver high-performance communication solutions. However, the use of successive interference cancellation (SIC) introduces significant security risks to power-domain NOMA systems when internal eavesdropping is present. To this end, this paper investigates the physical layer security of a PA-aided NOMA system where a nearby user is considered as an internal eavesdropper. We enhance the security of the NOMA system through optimizing the radiated power of PAs and analyze the secrecy performance by deriving the closed-form expressions for the secrecy outage probability (SOP). Furthermore, we extend the characterization of PA flexibility beyond deployment and scale adjustment to include flexible regulation of PA coupling length. Based on two conventional PA power models, i.e., the equal power model and the proportional power model, we propose a flexible power strategy to achieve secure transmission. The results highlight the potential of the PA-aided NOMA system in mitigating internal eavesdropping risks, and provide an effective strategy for optimizing power allocation and cell range of user activity.
Abstract:A multiuser uplink transmission framework based on the segmented waveguide-enabled pinching-antenna system (SWAN) is proposed under two operating protocols: segment selection (SS) and segment aggregation (SA). For each protocol, the achievable uplink sum-rate is characterized for both time-division multiple access (TDMA) and non-orthogonal multiple access (NOMA). Low-complexity placement methods for the pinching antennas (PAs) are developed for both protocols and for both multiple-access schemes. Numerical results validate the effectiveness of the proposed methods and show that SWAN achieves higher sum-rate performance than conventional pinching-antenna systems, while SA provides additional performance gains over SS.
Abstract:Pinching-antenna system (PASS) mitigates large-scale path loss by enabling flexible placement of pinching antennas (PAs) along the dielectric waveguide. However, most existing studies assume perfect channel state information (CSI), overlooking the impact of channel uncertainty. This paper addresses this gap by proposing a robust beamforming framework for both lossy and lossless waveguides. For baseband beamforming, the lossy case yields an second-order cone programming-based solution, while the lossless case admits a closed-form solution via maximum ratio transmission. The PAs' positions in both cases are optimized through the Gauss-Seidel-based method. Numerical results validate the effectiveness of the proposed algorithm and demonstrate that PASS exhibits superior robustness against channel uncertainty compared with conventional fixed-antenna systems. Notably, its worst-case achievable rate can even exceed the fixed-antenna baseline under perfect CSI.



Abstract:This letter proposes a novel user localization and channel estimation framework for pinching-antenna systems (PASS), where pinching antennas are grouped into subarrays on each waveguide to cooperatively estimate user/scatterer locations, thus reconstructing channels. Both single-waveguide (SW) and multi-waveguide (MW) structures are considered. SW consists of multiple alternatingly activated subarrays, while MW deploys one subarray on each waveguide to enable concurrent subarray measurements. For the 2D scenarios with a fixed user/scatter height, an orthogonal matching pursuit-based geometry-consistent localization (OMP-GCL) algorithm is proposed, which leverages inter-subarray geometric relationships and compressed sensing for precise estimation. Theoretical analysis on Cramér-Rao lower bound (CRLB) demonstrates that: 1) The estimation accuracy can be improved by increasing the geometric diversity through multi-subarray deployment; and 2) SW provides a limited geometric diversity within a $180^\circ$ half space and leads to angle ambiguity, while MW enables full-space observations and reduces overheads. The OMP-GCL algorithm is further extended to 3D scenarios, where user and scatter heights are also estimated. Numerical results validate the theoretical analysis, and verify that MW achieves centimeter- and decimeter-level localization accuracy in 2D and 3D scenarios with only three waveguides.